
Download free eBooks at bookboon.com

Prolog Techniques

117

Exploratory Code Development

Chapter 4

Exploratory Code Development

Conciseness and accessibility of source code through declarative reading are Prolog’s major strengths. It is
therefore relatively easy to appreciate the workings of someone else’s implementation, while it is much harder
independently to arrive at one’s own solution to the same problem. In this chapter, we illustrate a practi-
cal methodology which is intended to overcome this discrepancy: it is a software development style that is
interactive, incremental, exploratory and allows Prolog code to be arrived at in a relatively effortless manner.

4.1 A Nursery Rhyme

The task is to write a Prolog predicate rhyme/0 which displays on the screen the well-known nursery rhyme
This is the House that Jack Built ([11]):

This is the house that Jack built.

This is the malt
That lay in the house that Jack built.

This is the rat
That ate the malt
That lay in the house that Jack built.

This is the cat
That killed the rat
That ate the malt
That lay in the house that Jack built.

This is the dog
That worried the cat
That killed the rat
That ate the malt
That lay in the house that Jack built.

This is the cow with the crumpled horn
That tossed the dog
That worried the cat
That killed the rat
That ate the malt
That lay in the house that Jack built.

This is the maiden all forlorn
That milked the cow with the crumpled horn

That tossed the dog
That worried the cat
That killed the rat
That ate the malt
That lay in the house that Jack built.

This is the man all tattered and torn
That kissed the maiden all forlorn
That milked the cow with the crumpled horn
That tossed the dog
That worried the cat
That killed the rat
That ate the malt
That lay in the house that Jack built.

This is the priest all shaven and shorn
That married the man all tattered and torn
That kissed the maiden all forlorn
That milked the cow with the crumpled horn
That tossed the dog
That worried the cat
That killed the rat
That ate the malt
That lay in the house that Jack built.

This is the cock that crowed in the morn
That waked the priest all shaven and shorn
That married the man all tattered and torn
That kissed the maiden all forlorn

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

118

Exploratory Code Development

That milked the cow with the crumpled horn
That tossed the dog
That worried the cat
That killed the rat
That ate the malt
That lay in the house that Jack built.

This is the farmer sowing his corn
That kept the cock that crowed in the morn

That waked the priest all shaven and shorn
That married the man all tattered and torn
That kissed the maiden all forlorn
That milked the cow with the crumpled horn
That tossed the dog
That worried the cat
That killed the rat
That ate the malt
That lay in the house that Jack built.

In our implementation of rhyme/0 we want to exploit the rhyme’s repetitive structure and the fact that
all essential information is contained in its last verse. We record the last verse in the database by verse/1 as
shown in (P-4.1).

Prolog Code P-4.1: Definition of verse/1

1 verse([’This is the farmer sowing his corn’,

2 ’That kept the cock that crowed in the morn’,

3 ’That waked the priest all shaven and shorn’,

4 ’That married the man all tattered and torn’,

5 ’That kissed the maiden all forlorn’,

6 ’That milked the cow with the crumpled horn’,

7 ’That tossed the dog’,

8 ’That worried the cat’,

9 ’That killed the rat’,

10 ’That ate the malt’,

11 ’That lay in the house that Jack built.’]).

The rhyme is seen roughly to match the simplified pattern shown in Fig. 4.1.

verse 1 verse 2 verse 3 verse 4 verse 5 verse 6
↓ ↓ ↓ ↓ ↓ ↓

A B C D E F · · ·
A B C D E · · ·

A B C D · · ·
A B C · · ·

A B · · ·
A · · ·

Figure 4.1: The Rhyme’s Simplified Pattern

Knowing the rhyme’s last verse and the above structure will allow (up to some finer detail) the rhyme to
be fully reconstructed. With a view to a simplified preliminary Prolog implementation, we therefore define the
following Prolog fact in the database

verse_skeleton([’F’,’E’,’D’,’C’,’B’,’A’]).

The first task is now to define a predicate rhyme prel/2 which should enable us to obtain the skeleton rhyme’s
structure in the following manner.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

119

Exploratory Code Development

?- verse skeleton(V), rhyme prel(V, R), write term(R,[]).

[[A], [B, A], [C, B, A], [D, C, B, A], [E, D, C, B, A],

[F, E, D, C, B, A]]

Taking this as an informal specification of rhyme prel/2 , we want to arrive at its definition by a series of
interactive experiments.

4.1.1 First Preliminary Implementation

What could be the least ambitious first step in implementing rhyme prel/2 ? We may for example create a list
whose only entry is the last entry of the above list-of-lists. (This will correspond to reproducing the last verse.)
This we do by

?- verse skeleton(V), R = [V], write term(R,[]).

[[F, E, D, C, B, A]]

Still interactively, a list comprising the last two entries of the target list-of-lists may be generated by

?- verse skeleton(V), V = [| T1], R = [T1, V],

write term(R,[]).

[[E, D, C, B, A], [F, E, D, C, B, A]]

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://bookboon.com/
http://bookboon.com/count/advert/ae925238-62e0-4fca-a4f2-a24b0097a136

Download free eBooks at bookboon.com

Prolog Techniques

120

Exploratory Code Development

Here we unify T1 with the tail of V and position it in front of V to form the new list (of lists). How do
we now generate the next larger list (comprising the last three entries of the target list-of-lists)? We proceed as
before except that we assemble R from the entries T2 , T1 and V (in that order!) where T2 is unified with
the tail of T1 .

?- verse skeleton(V), V = [| T1], T1 = [| T2],

R = [T2, T1, V], write term(R,[]).

[[D, C, B, A], [E, D, C, B, A], [F, E, D, C, B, A]]

One more such step should suffice to appreciate the underlying pattern of interactively generating instances of
R .

?- verse skeleton(V), V = [| T1], T1 = [| T2],

T2 = [| T3], R = [T3, T2, T1, V], write term(R,[]).

[[C, B, A], [D, C, B, A], [E, D, C, B, A], [F, E, D, C, B, A]]

Since our aim is to identify a recursive pattern in the above interactive session, we recast the inputs slightly by
observing that [a1, · · · , an−1, an] and [a1|[a2|[a3| · · · |[an−1|[an]] · · ·]] are equivalent representations of the same
list. Let’s have a look at the last two queries again.

?- verse skeleton(V), V = [| T1], T1 = [| T2],

R = [T2︸︷︷︸
Head Old

|[T1|[V]]︸ ︷︷ ︸
Tail Old

]

︸ ︷︷ ︸
Rhyme Old

, write term(R,[]).

[[D, C, B, A], [E, D, C, B, A], [F, E, D, C, B, A]]

?- verse skeleton(V), V = [| T1], T1 = [| T2],

T2︸︷︷︸
Head Old

= [| T3︸︷︷︸
Head

], R = [T3︸︷︷︸
Head

|[T2|[T1|[V]]]︸ ︷︷ ︸
Rhyme Old

]

︸ ︷︷ ︸
Rhyme

,

write term(R,[]).

[[C, B, A], [D, C, B, A], [E, D, C, B, A], [F, E, D, C, B, A]]

The annotated lists suggest the following pseudocode (using Prolog’s list-notation) for one single recursive
step.

Rhyme Old = [Head Old|Tail Old] (4.1)

Head Old = [|Head]

Rhyme = [Head|Rhyme Old] (4.2)

Notice that by equations (4.1) and (4.2) we may replace the latter by

Rhyme = [Head|[Head Old|Tail Old]]

The base case for the recursion is given by

First Rhyme = [[’F’, ’E’, ’D’, ’C’, ’B’, ’A’]]

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

121

Exploratory Code Development

A straightforward implementation of the recursive step is by the (auxiliary) predicate rhyme aux/3 in (P-4.2).

Prolog Code P-4.2: First definition of the auxiliary predicate

1 rhyme_aux(R,1,R).

2 rhyme_aux([Head_Old|Tail_Old],Counter,R) :-

3 Head_Old = [_|Head],

4 New_Counter is Counter - 1,

5 rhyme_aux([Head|[Head_Old|Tail_Old]],New_Counter,R).

In the first argument of rhyme aux/3 the most recent version of the rhyme is accumulated; its second argument
is a counter which is decremented from an initial value until it reaches unity at which point the third argument
is instantiated to the first. It is noteworthy in the definition of rhyme aux/3 that, as a consequence of using
the accumulator technique, reference to the more complex case in the recursive step is found in the rule’s body.
(In this sense, as opposed to the familiar situation from imperative programming, progression is from right to
left.)

We find out by an experiment what the counter should be initialized to.

?- verse skeleton(V), rhyme aux([V],1, R), write term(R,[]).

[[F, E, D, C, B, A]]

?- verse skeleton(V), rhyme aux([V],2, R), write term(R,[]).

[[E, D, C, B, A], [F, E, D, C, B, A]]

...

?- verse skeleton(V), rhyme aux([V],6, R), write term(R,[]).

[[A], [B, A], [C, B, A], [D, C, B, A], [E, D, C, B, A],

[F, E, D, C, B, A]]

It is seen that the second argument of rhyme aux/3 (the counter) will have to be initialized to the length of
(what stands for) the last verse. This gives rise to the following first version of the predicate rhyme prel/2

rhyme_prel_1(V,R) :- length(V,L), rhyme_aux([V],L,R).

which then behaves as specified on p. 119.
Even though the solution thus obtained is perfectly acceptable, there is scope for improvement. Counters

are commonly used in imperative programming for verifying a stopping criterion. The corresponding task in
declarative programming is best achieved by pattern matching . There is indeed no need for a counter here since
the information for when not to apply the recursive step (any more) can be gleaned from the pattern of the
first argument of rhyme aux/3 : For the recursion to stop, the head of the list-of-lists (in the first argument)
should itself be a list with exactly one entry. (The complete rhyme will have been arrived at when the first
verse comprises a single line!) This idea gives rise in (P-4.3) to a new, improved (and more concise) version of
the auxiliary predicate, now called rhyme aux/3 .

Prolog Code P-4.3: Another definition of the auxiliary predicate

1 rhyme_aux_2([[First]|Rest],[[First]|Rest]).

2 rhyme_aux_2([Head_Old|Tail_Old],R) :-

3 Head_Old = [_|Head],

4 rhyme_aux_2([Head|[Head_Old|Tail_Old]],R).

rhyme aux 2/3 behaves as intended:

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

Exploratory Code Development

122

?- verse skeleton(V), rhyme aux 2([V], R), write term(R,[]).

[[A], [B, A], [C, B, A], [D, C, B, A], [E, D, C, B, A],

[F, E, D, C, B, A]]

The definition of a second, improved version of the preliminary rhyme predicate now simplifies to

rhyme_prel_2(V,R) :- rhyme_aux_2([V],R).

To complete the ‘skeleton version’ of the rhyme, we display the above by

?- verse skeleton(V), rhyme prel 2(V, R), show rhyme(R).

A

B

A

...

F

E

D

C

B

A

with the predicate show rhyme/1 defined by

show_list([]).

show_list([H|T]) :- write(H), nl, show_list(T).

show_rhyme([]).

show_rhyme([H|T]) :- show_list(H), nl, show_rhyme(T).

There is still scope for further improvement leading to an even more concise version of the auxiliary predicate.
We may replace in the definition of rhyme aux 2/2 all occurrences of Head Old by [H|T], say, accounting for
the fact that Head Old will be unified with a list.

rhyme_aux_2([[H|T]|Tail_Old],R) :-

[H|T] = [_|Head],

rhyme_aux_2([Head|[[H|T]|Tail_Old]],R).

But then, by virtue of the first goal in the body of this rule we may replace all occurrences of Head by T.
Subsequently, the first goal may be dropped. Overall, we obtain in (P-4.4) a third, even more concise version
of the auxiliary predicate.

Prolog Code P-4.4: Third definition of the auxiliary predicate

1 rhyme_aux_3([[First]|Rest],[[First]|Rest]).

2 rhyme_aux_3([[H|T]|Tail_Old],R) :- rhyme_aux_3([T|[[H|T]|Tail_Old]],R).

There is hardly any room for improvement left save perhaps a minor simplification of the first clause. We derive
an alternative boundary case by first completing the interactive session from p. 120 and then carrying out one
more step:

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

Exploratory Code Development

123

?- verse skeleton(V), V = [| T1], T1 = [| T2],

T2 = [| T3], T3 = [| T4], T4 = [| T5],

R = [T5|[T4|[T3|[T2|[T1|[V]]]]]], write term(R,[]).

[[A], [B, A], [C, B, A], [D, C, B, A], [E, D, C, B, A],

[F, E, D, C, B, A]]

?- verse skeleton(_V), V = [| T1], T1 = [| T2],

T2 = [| T3], _T3 = [| T4], T4 = [| T5], T5 = [| T6],

R = [_T6|[_T5|[_T4|[_T3|[_T2|[_T1|[_V]]]]]]],

write term(_R,[]).

[[], [A], [B, A], [C, B, A], [D, C, B, A], [E, D, C, B, A],

[F, E, D, C, B, A]]

The first query suggests that we are finished if the (partially) completed skeleton rhyme’s head is a single-
element list; this condition gave rise to the earlier boundary case. On the other hand, in the second query the
variable R is unified with a list whose head is empty and whose tail is the full skeleton rhyme. This suggests
the following alternative first clause for rhyme aux 3/2 ,

rhyme_aux_3([[]|R],R).

The disadvantage of this stopping criterion is that it will cause one additional invocation of the recursive step.

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://bookboon.com/
http://bookboon.com/count/advert/0ba6aa54-2f19-4d35-9ee1-a00400a7e3c6

Download free eBooks at bookboon.com

Prolog Techniques

Exploratory Code Development

124

Of course, the third version of the auxiliary predicate, rhyme aux 3/2 , (with any of the two alternative first
clauses) gives rise to yet another version of rhyme prel/2 .

rhyme_prel_3(V,R) :- rhyme_aux_3([V],R).

4.1.2 Another Preliminary Implementation

With a view to wishing to use the accumulator technique (yet again), let us examine the first few steps of an
(as yet imaginary) interactive session.

?-...

[F, E, D, C, B, A], []

?-...

[E, D, C, B, A], [[F, E, D, C, B, A]]

?-...

[D, C, B, A], [[E, D, C, B, A], [F, E, D, C, B, A]]

?-...

[C, B, A], [[D, C, B, A], [E, D, C, B, A], [F, E, D, C, B, A]]

Two lists are involved here. The first list serves as a ‘supplier’ for updating the second one in which the skeleton
rhyme’s verses are accumulated. We observe that in each step the first list ‘loses’ its head, whereas the second
list is augmented by the first one. At the end of this sequence of steps (i.e. when the first list is empty) the
second list will contain the full skeleton rhyme. Having established the underlying idea, we now turn to the
corresponding interactive session. (This may look tedious but is easily carried out using ‘copy-and-paste’.)

?- verse skeleton(V), P1 = (V,[]), write term(P1,[]).

[F, E, D, C, B, A], []

?- verse skeleton(V), P1 = (V,[]),

([H1| T1], Acc1) = P1, P2 = (T1,[[H1| T1]| Acc1]),

write term(P2,[]).

[E, D, C, B, A], [[F, E, D, C, B, A]]

?- verse skeleton(V), P1 = (V,[]),

([H1| T1], Acc1) = P1, P2 = (T1,[[H1| T1]| Acc1]),

([H2| T2], Acc2) = P2, P3 = (T2,[[H2| T2]| Acc2]),

write term(P3,[]).

[D, C, B, A], [[E, D, C, B, A], [F, E, D, C, B, A]]

?- ...

To see how consecutive steps in the above query are interrelated, we have a look at two goals in the last query
in some more detail; this is shown in Fig. 4.2. It is indicated here how the new pair P3 is expressed in terms

([H2|
︷︸︸︷
T2]︸ ︷︷ ︸, Acc2︸ ︷︷ ︸) = P2, P3 = (

︷︸︸︷
T2 ,[[H2| T2]︸ ︷︷ ︸| Acc2︸ ︷︷ ︸]),
�

� �

Figure 4.2: Exploring Details of the Rhyme’s Structure

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

Exploratory Code Development

125

of the old pair P2 . This observation gives rise to (P-4.5), a fourth version of rhyme prel/2 .

Prolog Code P-4.5: Fourth version of rhyme prel/2

1 rhyme_prel_4(V,R) :- rhyme_acc(V,[],R).

2 rhyme_acc([],R,R).

3 rhyme_acc([HOld|TOld],AccOld,R) :-

4 rhyme_acc(TOld,[[HOld|TOld]|AccOld],R).

4.1.3 The Final Version

We may use any of the four versions produced thus far of rhyme prel/2 to obtain a rough version of rhyme/0
by replacing in the query on p. 122, Sect. 4.1.1, the term verse skeleton(V) by the term verse(V) ; for
example,

?- verse(V), rhyme prel 2(V, R), show rhyme(R).

That lay in the house that Jack built.

That ate the malt

That lay in the house that Jack built.

...

This is the farmer sowing his corn

That kept the cock that crowed in the morn

...

That tossed the dog

That worried the cat

That killed the rat

That ate the malt

That lay in the house that Jack built.

We realize that the rhyme thus produced is not quite what we want: the first line of each verse (and not merely
that of the last verse) should begin with ‘This is ...’. This effect will be achieved in three steps.

1. Define a predicate to first/2 which, when applied to an atom, replaces all its characters up to the first
occurrence of the string ‘the’ by the string ‘This is ’. Example:

?- to first(’We find the definite article.’,A).

A = ’This is the definite article.’

2. Define change first/2 in terms of to first/2 by

change_first([H1|T],[H2|T]) :- to_first(H1,H2).

This predicate applies to first/2 to the head of a list of atoms while leaving the tail unchanged. Example:

?- change first([’That was the first’,’Now the second’,

’Now the third’],L).

L = [’This is the first’, ’Now the second’, ’Now the third’]

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

Exploratory Code Development

126

3. Now apply change first/2 by means of the built-in predicate maplist/3 to the first line of each verse
of the rhyme’s rough version.

Below we show our definition of to first/2 .

to_first(Old,New) :- atom_chars(Old,Charlist),

change(Charlist,Newlist),

concat_atom(Newlist,New).

Given an atom (in Old), it is first converted by means of the built-in predicate atom chars/2 into a list of
one-character atoms (in Charlist).

Built-in Predicate: atom chars(?Atom,?CharList)

It converts an atom into the corresponding list of one–character atoms and
vice versa. Example:

?- atom chars(’Text’,L).

L = [’T’, e, x, t]

The predicate change/2 is then used to effect the intended change in the atom’s list-of-characters representation;
it is defined by1

change([t,h,e|T],[’T’,h,i,s,’ ’,i,s,’ ’,t,h,e|T]) :- !.

change([_|T],X):- change(T,X).

and its behaviour is exemplified by

?- change([’F’,i,n,d,’ ’,t,h,e,’ ’,s,t,r,i,n,g], L),

write_term(L,[]).

[T, h, i, s, , i, s, , t, h, e, ,s, t, r, i, n, g]

Finally, the built-in predicate concat atom/2 is used to convert the list-of-characters in Newlist into an atom
(in New).2

Built-in Predicate: concat atom(+List,-Atom)

Atom is obtained by concatenating the elements of List . Example:

?- concat atom([atom1,atom2,atom3],A).

A = atom1atom2atom3

Having thus arrived at an implementation of change first/2 , we now want to apply this predicate to the head
of each of the rough rhyme’s verses. Since the latter is available (from rhyme prel/2) as a list, we may use
maplist/3 for a concise definition of rhyme/0 .

1Because of the cut, change/2 will fail on backtracking even for multiple occurrences of the substring ‘the’ in its first argument.
2For the present purposes where a list of single character atoms needs concatenating, we may use atom chars/2 as an alternative.

The last goal in the definition of to first/2 then reads as atom chars(New,Newlist).

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

Exploratory Code Development

127

Built-in Predicate: maplist(+Pred,?List1,?List2)

The 2–ary predicate Pred is applied to each entry of List1 giving List2 and
vice versa.3Example:

?- maplist(append([a,b]),[[r,s],[u,v]],L).

L = [[a, b, r, s], [a, b, u, v]]

?- maplist(append([a,b]),L,[[a,b,r,s],[a,b,u,v]]).

L = [[r, s], [u, v]]

(Here, append/3 became a 2–ary predicate by partial application by fixing its

first argument to [a,b] .)

Now, any of the four versions of rhyme prel/2 may be used to define rhyme/0 ; for example,

rhyme_2 :- verse(V),

rhyme_prel_2(V,RTemp),

maplist(change_first,RTemp,R),

show_rhyme(R).

4.1.4 Other Approaches

All solutions considered thus far were based on (some form of) the accumulator technique. The problem at hand
can also be approached by simple recursion, however. To arrive at such a solution, we first show in Table 4.1
the desired rhyme for some last verses of various lengths. We ask ourselves the following question:

Last Verse Rhyme

[’A’] [[’A’]]

[’B’,’A’] [[’A’],[’B’,’A’]]

[’C’,’B’,’A’] [[’A’],[’B’,’A’],[’C’,’B’,’A’]]

[’D’,’C’,’B’,’A’] [[’A’],[’B’,’A’],[’C’,’B’,’A’],[’D’,’C’,’B’,’A’]]

· · · · · ·

Table 4.1: Rhyme Structure

Given a particular rhyme, how can the previous rhyme be expressed in terms of the current one?

A declarative reading of the last two lines of Table 4.1 suggest the following: [H|T] is the last verse of the
current rhyme C if T is the last verse of the previous rhyme P and C comes about by appending [[H|T]] to

3The ‘reverse’ application of maplist/3 is possible only if the second argument of Pred may be used in the input mode. This
is not the case for example for flatten/2 as is shown below.

?- maplist(flatten,[[a,[b,[c,d],e]],[[[r,s],t],x,y]],L).

L = [[a, b, c, d, e], [r, s, t, x, y]]

?- maplist(flatten,L,[[a,b,c,d,e],[r,s,t,x,y]]).

No

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

Exploratory Code Development

128

P . And, the boundary case is identified by observing that the one-line verse [L] is the last verse of [[L]] . The
aforesaid is immediately expressed in Prolog by either of the two (logically equivalent) definitions (P-4.6) and
(P-4.7).4

Prolog Code P-4.6: Fifth version of rhyme prel/2

1 rhyme_prel_5([L],[[L]]).

2 rhyme_prel_5([H|T],C) :- append(P,[[H|T]],C), rhyme_prel_5(T,P).

Prolog Code P-4.7: Sixth version of rhyme prel/2

1 rhyme_prel_6([L],[[L]]).

2 rhyme_prel_6([H|T],C) :- rhyme_prel_6(T,P), append(P,[[H|T]],C).

(It is readily confirmed that both versions behave as earlier ones do.) As each of the last two predicates is
defined in terms of append/3 we would expect some improvement in elegance (and performance) by rewriting

4The following are alternative first clauses:
rhyme prel 5([],[]).

rhyme prel 6([],[]).

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://bookboon.com/
http://bookboon.com/count/advert/b6907fa5-6d27-49ae-a477-a01a01116857

Download free eBooks at bookboon.com

Prolog Techniques

Exploratory Code Development

129

them using difference lists . Indeed, both versions give rise to (P-4.8), the same concise, tail recursive imple-
mentation using difference lists.

Prolog Code P-4.8: Seventh version of rhyme prel/2

1 rhyme_prel_dl([L],[[L]|X]-X).

2 rhyme_prel_dl([H|T],C1-C2) :- rhyme_prel_dl(T,C1-[[H|T]|C2]).

3 rhyme_prel_7(V,R) :- rhyme_prel_dl(V,R-[]).

Exercise 4.1. We want to make an experimental comparison between the various versions of rhyme prel/2
and need therefore a predicate that produces rhymes of any specified length. To be more specific, we will need
a predicate long verse/1 which removes from the database the current version of verse/1 and replaces it by
something of a repetitive structure and of a specified length as shown in the session below.

?- long verse(3), verse(V), show list(V).

That interacts with the item ...

That interacts with the item ...

That interacts with the item ...

?- rhyme 2.

This is the item ...

This is the item ...

That interacts with the item ...

This is the item ...

That interacts with the item ...

That interacts with the item ...

Define the predicate long verse/1 .

�

We can now use long verse/1 in conjunction with the built-in predicate time/1 to assess the versions’ per-
formance; this is shown for the last three versions in Table 4.2 below.5 As expected, version seven, the imple-

Version length of V 100 200 300 400 500
5 CPU-time [sec] 1.97 15.77 52.50 125.0 244.1

Version length of V 1,000 2,000 3,000 4,000 5,000
6 CPU-time [sec] 4.51 20.04 45.53 85.63 132.4

Version length of V 10,000 20,000 30,000 40,000 50,000
7 CPU-time [sec] 0.28 0.71 0.55 1.32 1.16

Table 4.2: CPU Times for Versions of the Query ?- rhyme prel(V, R).

mentation based on difference lists, is by far the most efficient. Furthermore, perhaps surprisingly, version six

5The first entry in Table 4.2 for example may be obtained by
?- long verse(100), verse(V), time(rhyme prel 5(V, R)).

% 176,749 inferences in 1.97 seconds (89720 Lips)

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

Exploratory Code Development

130

turns out to be better than its tail recursive counterpart, version five. We turn to Prolog’s tracing facility to
find out why this is the case:

?- trace([append/3,rhyme prel 5/2,rhyme prel 6/2]).

% append/3: [call, redo, exit, fail]

% rhyme_prel_5/2: [call, redo, exit, fail]

% rhyme_prel_6/2: [call, redo, exit, fail]

[debug] ?- rhyme prel 5([’B’,’A’],R).

T Call: (6) rhyme_prel_5([’B’, ’A’], _G418)

T Call: (7) append(_G506, [[’B’, ’A’]], _G418)

T Exit: (7) append([], [[’B’, ’A’]], [[’B’, ’A’]])

T Call: (7) rhyme_prel_5([’A’], [])

T Call: (8) append(_G512, [[’A’]], [])

T Fail: (8) append(_G512, [[’A’]], [])

T Fail: (7) rhyme_prel_5([’A’], [])

T Redo: (7) append(_G506, [[’B’, ’A’]], _G418)

T Exit: (7) append([_G476], [[’B’, ’A’]], [_G476, [’B’, ’A’]])

T Call: (7) rhyme_prel_5([’A’], [_G476])

T Exit: (7) rhyme_prel_5([’A’], [[’A’]])

T Exit: (6) rhyme_prel_5([’B’, ’A’], [[’A’], [’B’, ’A’]])

R = [[’A’], [’B’, ’A’]]

[debug] ?- rhyme prel 6([’B’,’A’],R).

T Call: (6) rhyme_prel_6([’B’, ’A’], _G418)

T Call: (7) rhyme_prel_6([’A’], _G498)

T Exit: (7) rhyme_prel_6([’A’], [[’A’]])

T Call: (7) append([[’A’]], [[’B’, ’A’]], _G418)

T Exit: (7) append([[’A’]], [[’B’, ’A’]], [[’A’], [’B’, ’A’]])

T Exit: (6) rhyme_prel_6([’B’, ’A’], [[’A’], [’B’, ’A’]])

R = [[’A’], [’B’, ’A’]]

It is seen that version five causes Prolog to backtrack on the search tree of append/3 until append([G482],[[’B’,’A’]]

succeeds. This is quite a contrast to rhyme prel 6 which does not cause backtracking but builds up a stack of
subgoals all of which eventually are satisfied in turn. It is also easily verified that on backtracking version five
will not terminate whereas version six will fail to re-satisfy the goal and returns ‘No’.

Exercise 4.2. Modify the definition of rhyme prel 5/2 such that it won’t loop but fails on backtracking.

�

Exercise 4.3. Define cputime(+Predname,+Arglist,-Time) for obtaining the CPU seconds in Time for
the predicate with name Predname and arguments in Arglist . Then, for example, the following is an alternative
to the query in footnote 5 on p. 129:

?- long verse(100),verse(V),cputime(rhyme prel 5,[V, R],Time).

Time = 1.97

The predicate cputime/3 will be an improvement on time/1 since it will then be possible to produce for
example the first row of Table 4.2 in one sweep interactively as follows.

?- findall(Time,(member(L,[100,200,300,400,500,600,700]),

long verse(L),

verse(V),

cputime(rhyme prel 5,[V, R], Time)),

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

Exploratory Code Development

131

Times).

Times = [2.03, 15.71, 52.29, 124.51, 242.5, 419.58, 667.78]

(Slight variations in the CPU times may be observed even when repeating the same query.) In your definition
of cputime/3 you should use the built-in predicate statistics/2 .

Built-in Predicate: statistics(+Key,-Value)

Unify system statistics determined by Key with Value . For example, we obtain
the CPU seconds and number of inferences accumulated in the present Prolog
session by

?- statistics(cputime,Time).

Time = 18020.2

?- statistics(inferences,Inf).

Inf = 222054681

�

Exercise 4.4. We have created several versions of rhyme prel/2 and have indicated the version number
by an appropriate suffix attached to the original predicate name. Let us now assume that this is the style
for indicating predicates’ versions in general. In this exercise, you are asked to define a predicate cputime/4
which is a generalization of cputime/3 from Exercise 4.3 in that the former will allow the version number to
be specified by an extra (the third) argument. Example:

?- long verse(100),verse(V),cputime(rhyme prel,[V, R],5,Time).

Time = 1.97

The benefit of cputime/4 is obvious: it will allow the timing of several versions of the same predicate in one
sweep, as is illustrated below.

?- long verse(70000), verse(V),

maplist(cputime(rhyme prel,[V, R]),[1,2,3,4,7],Times).

Times = [4.28, 3.19, 3.35, 1.54, 3.18]

�

Exercise 4.5. Using cputime/4 from Exercise 4.4, produce all entries of Table 4.2 interactively by one
single query.

Hint. As a first step, you should revisit the problem of producing interactively a list comprising the first
row of entries in Table 4.2 (c.f. Exercise 4.3). This is now best achieved by using the built-in predicates
findall/3 and between/3 and by observing that the last verse’s length is expressed in terms of the column
number j = 1, . . . , 5 as

length = j × 102

The general case is dealt with by nesting two such constructs. Version number and length are respectively
generated by

version = i + 3

length = j × 10i

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

Exploratory Code Development

132

with i = 2, 3, 4 and j = 1, . . . , 5.

�

4.2 Project: ’One Man Went to Mow . . .’

Another nursery rhyme with a similar recursive structure is the well-known song One man went to mow . . .

whose three-verse version is as follows.6

One man went to mow,
Went to mow a meadow,
One man and his dog,

Went to mow a meadow.

6Source: The BBC web site
http://www.bbc.co.uk/cbeebies/tweenies/songtime/

It is a cornucopia of songs and rhymes for pre-school children.

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://bookboon.com/
http://bookboon.com/count/advert/9da50518-808b-41b3-9e08-9fe200fbad87

Download free eBooks at bookboon.com

Prolog Techniques

Exploratory Code Development

133

Two men went to mow,
Went to mow a meadow,

Two men, one man and his dog,
Went to mow a meadow.

Three men went to mow,
Went to mow a meadow,

Three men, two men, one man and his dog,
Went to mow a meadow,
Went to mow a meadow.

We want to outline here the way this rhyme can be produced in Prolog and formulate the stages of the detailed
work as exercises.

This song has a very similar recursive structure to that of This is the house that Jack built except that
there is now no predefined ‘last verse’ from which we could unravel the entire rhyme. Our aim is to produce
a predicate song/0 returning on the terminal a continuous stream of verses until stopped by the keystrokes	
 ��Ctrl +

	
 ��C . The intended behaviour is shown in Fig. 4.3.7

?- song.

One man went to mow,

Went to mow a meadow,

One man and his dog,

Went to mow a meadow.

Two men went to mow,

Went to mow a meadow,

Two men,

one man and his dog,

Went to mow a meadow.

...

Seven men went to mow,

Went to mow a meadow,

Seven men,

six men,

five men,

four men,

three men,

two men,

one man and his dog,

Went to mow a meadow.

Action (h for help) ? abort

% Execution Aborted

Figure 4.3: Desired Behaviour of song/0

7Here we deliberately avoid asking for a fixed number of verses since otherwise the task would not be dissimilar enough to the
one considered in Sect. 4.1: we could then produce a ‘last verse’ with relative ease and then proceed as before.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

Exploratory Code Development

134

The core of the implementation is a predicate song skeleton/1 which on backtracking returns the skeleton
structure of each verse using numerals.

?- song skeleton(Verse).

Verse = [1] ;

Verse = [2, 1] ;

Verse = [3, 2, 1] ;

...

Exercise 4.6. Define the predicate song skeleton/1 by recursion.
Hint. You may model your definition of song skeleton/1 on that of the predicate int/1 , which on

backtracking returns all natural numbers:

?- int(N).

N = 1 ;

N = 2 ;

N = 3 ;

...

The predicate int/1 is defined in terms of an auxiliary predicate int(+Int1,?Int2) by

int(N) :- int(1,N).

which on backtracking instantiates Int2 to all integers starting from Int1 :

?- int(5,I).

I = 5 ;

I = 6 ;

I = 7 ;

...

The definition of int/2 is as follows.

int(I,I).

int(Last,I) :- succ(Last,New), int(New,I).

Built-in Predicate: succ(?Int1,?Int2)

Succeeds if Int1 = Int2 + 1. Incrementation by succ/2 is faster than by the

usual arithmetic predicate.

�

There is in Prolog, as an alternative to recursion, the facility of failure driven, and repeat loops for the
implementation of code with a repetitive behaviour. We want to illustrate this idea by way of a predicate nat/1
which has the same specification as the predicate int/1 from above but is defined in terms of a repeat loop
rather than by recursion. Let nat/1 be defined by

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

Exploratory Code Development

135

nat(N) :- first_nat, current_nat(N).

nat(N) :- repeat, update_nat, current_nat(N).

with the auxiliary predicates

first_nat :- dynamic(current_nat/1),

retractall(current_nat(_)),

assert(current_nat(1)).

and

update_nat :- current_nat(N),

retractall(current_nat(_)),

NewN is N + 1,

assert(current_nat(NewN)).

The predicate current nat/1 is used here to hold the current value of the natural number in the database
as a fact. first nat/0 clears the database of all facts defining current nat/1 (possibly originating from
earlier invocations of nat/1) and writes to the database the first natural number. update nat/0 retrieves the
previous value, clears the database, and writes back the updated value. The generation of an infinite stream
of values by (the second clause of) nat/1 hinges on the built-in predicate repeat/0 which always succeeds on
backtracking and is best thought of as returning a distinct (albeit invisible) ‘solution’ each time it is re-invoked.
The conjunction of subgoals to the right of repeat, i. e.

http://bookboon.com/
http://bookboon.com/count/advert/7a02d4d2-9105-46a9-9453-a37800b93d7c

Download free eBooks at bookboon.com

Prolog Techniques

Exploratory Code Development

136

update_nat, current_nat(N)

is re-satisfied on backtracking, resulting in an update of N . The database serves here as a ‘scratchpad’ for
intermediate results.

Exercise 4.7. Define a second version of the predicate song skeleton/1 by a repeat loop. Your solution
should be modelled on the definition of nat/1 .

�

There are of course other possibilities, too, for defining song skeleton/1 . Take for example the one suggested
by the following query.

?- current prolog flag(max integer, Largest),

between(1, Largest, H), findall(I,between(1, H, I), R),

reverse(R,L).

L = [1] ;

L = [2, 1] ;

L = [3, 2, 1] ;

...

The list L is constructed here by:

• Getting hold of the largest number Largest which can be represented in SWI–Prolog as an integer.

• Obtaininig the head H of L by the built-in predicate between/3 .

• Creating the reverse R of L by the all-solutions predicate findall/3 .

• And, finally, reversing R to get L .

A new L is obtained each time the query’s second goal is re-satisfied. This solution is neither concise nor is it
as elegant as the earlier ones, however.

The remaining steps for the completion of song/0 are spelt out in the Exercises 4.8 to 4.11 below.
Exercise 4.8. Define a predicate digits(+Number,-List) for converting a natural Number into the list of

its digits in List :

?- digits(351,L).

L = [3, 5, 1]

(As an optional task which, however, is not needed in the present context, you may extend the definition of
digits/2 for the instantiation pattern digits(-Number,+List) .)

Now define a predicate in words(+Num,-Atom) for converting a numeral Num to its plain English equivalent
in Atom . (Allow for up to 9, 999 in Num .) Example:

?- in words(351,A).

A = threehundredfiftyone8

�

Exercise 4.9. In the definition of the first and third lines of each verse you will need a predicate capital/2
for converting the first character of an atom to its upper case equivalent:

8For reasons of simplicity, the rules of hyphenation and separating spaces are ignored here.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

Exploratory Code Development

137

?- capital(’sixteen men, fifteen men, fourteen men’,C).

C = ’Sixteen men, fifteen men, fourteen men’

Define capital/2 .

Note. Use the built-in predicate atom chars/2 to disassemble atoms into lists and vice versa; see, inset on
p. 126. For a concise solution to converting single letters to upper case you will also need the built-in predicate
char code/2 .9

Built-in Predicate: char code(?Char,?ASCII)

Converts the single-character atom Char to its ASCII code in ASCII and vice
versa. Example:

?- char code(a,ASCII).

ASCII = 97

?- char code(Char,65).

Char = ’A’

�

Exercise 4.10. Define a predicate line3/2 for generating the third line of each verse; for example, the
third verse’s third line we get by

?- line3([3,2,1],Text), write(Text).

Three men,

two men,

one man and his dog,

Text = ’Three men,\n two men,\n one man and his dog,’

In your work, you may be guided by the following query:

?- maplist(in words,[16,15,14],[H|T]),

maplist(atom concat(’ men, ’),T,L), concat atom([H|L],A),

atom concat(A,’ men’,A2).

H = sixteen

T = [fifteen, fourteen]

L = [’ men, fifteen’, ’ men, fourteen’]

A = ’sixteen men, fifteen men, fourteen’

A2 = ’sixteen men, fifteen men, fourteen men’

�

9A simpler but more tedious alternative is by using a predicate which is defined by 26 facts – one for each letter in the English
alphabet.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

Exploratory Code Development

138

Built-in Predicate: atom concat(?Atom1,?Atom2,?Atom3)

Atom3 is the concatenation of Atom1 and Atom2 . At least two of the argu-
ments must be instantiated. Alternatively, it suffices if the last argument is
instantiated only. Examples:

?- atom concat(atom1,atom2,A).

A = atom1atom2

?- atom concat(A1,A2,atom3).

A1 = ’’ A2 = atom3 ;

A1 = a A2 = tom3

Yes

Exercise 4.11. Complete the definition of song/0 by using your predicates from the Exercises 4.6 to 4.10.

�

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Prolog Techniques

Exploratory Code Development

139

4.3 Chapter Notes

We have illustrated a practical Prolog development technique based on an incremental, exploratory and interac-
tive working style. It is not dissimilar to the Incremental Development Model known from Software Engineering
(e. g. [15]) the application of which in the commercial context results in prototypes at an early stage for evalu-
ation and feedback. We have identified the following development stages in particular for predicates defined by
recursion:

• Identify informally a recursive structure of the problem.

• Experiment interactively to explore and confirm the above.

• Identify a pattern and write pseudo–code.

• Write a preliminary (and perhaps incomplete) Prolog implementation.

• Refine details to arrive at a final Prolog implementation.

The method discussed here won’t of course be a substitute for existing formal approaches to logic program-
ming that are rooted in Mathematical Logic (e. g. [5]).

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

Exploratory Code Development

140

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://bookboon.com/
http://bookboon.com/count/advert/5e8cd819-4ddd-4941-a6bb-a16900eac393

